Completeness and Separability of the Space of a Class of Integrable Fuzzy Valued Functions Based on the tK-Integral Norm Metric
نویسندگان
چکیده
When a class of fuzzy value functions constitute a metric space, the completeness and separability is an important problem that must be considered to discuss the approximation of fuzzy systems. In this paper, Firstly, a new tK-integral norm is defined by introducing two induced operators, and prove that the class of tK-integrable fuzzy value functions is a metric space. And then, the integral transformation theorems and tK-integrable BorelCantelli Lemma are applied to study the completeness of the space, furthermore, its separability is discussed by means of the approximation of fuzzy valued simple functions and fuzzy valued Bernstein polynomials. The results show that the space of the tK-integrable fuzzy valued functions constitutes a complete separable metric space in the sense of the tK-integral norm. Key–Words: K-Additive Measure, tK-Integrable Function, tK-Integral Norm, Completeness, Separability
منابع مشابه
Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملOn metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کاملFUZZY GOULD INTEGRABILITY ON ATOMS
In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...
متن کاملGENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY
The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...
متن کامل